
n-Dimensional Index Structures 

Tecnologie delle Basi di Dati M 



Multi-dimensional queries 

 As we saw, B+-tree is able to solve queries  
involving multiple attributes 

 Which queries are solvable by exploiting  
a multi-attribute index? 

 The query evaluation is efficient enough? 
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Types of n-dimensional queries 

 A1 = v1, A2 = v2, … , An = vn (point query) 

 l1 ≤ A1 ≤ h1, l2 ≤ A2 ≤ h2, … , ln ≤ An ≤ hn (window query) 

 A1 ≈ v1, A2 ≈ v2, … , An ≈ vn (nearest neighbor query) 

 What if the data “value” is not a point? 
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Examples of use 

 Geographic/Spatial Information Systems 
 Coordinates of points 

 Places, cities 

 Objects with extension 

 Regions, streets, rivers 

 Multimedia Databases 
 Content-Based Retrieval 

 Representing content by way of numerical characteristics (features) 

 Similarity of content is assessed by evaluating similarity of features 

 … 
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Using B+-tree 

 Suppose we have a window query on 2 attributes (A,B) 
 Every interval represents 10% of the total 

 We expect to retrieve 1% of data 

 Possible solutions: 
 1 bi-dimensional B+-tree (A,B) 

 2 mono-dimensional B+-trees (A),(B) 
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1 bi-dimensional B+-tree (A,B) 

 Leaf capacity = 3 records 
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2 mono-dimensional B+-trees 

 In this case we access 20% of data 
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B+-tree efficiency 

 In both cases, too much wasted work 

 The reason is that points which are close in space are stored in 
distant leaves 
 In the first case, by the “linearization” of attributes 

 In the other case, by ignoring the other attribute 

 Multi-dimensional (spatial) indices try to maintain  
the spatial proximity of records 
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Spatial indexing 

 Issue emerged in the ’70s due to the insurgence of  
2/3-D problems 
 Cartography 

 Geographic Information Systems 

 VLSI 

 CAD 

 Recovered in the ’90s to solve problems posed  
by new applications 
 Multimedia DBs 

 Data mining 
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Spatial indices: different approaches 

 Derived by 1-D structures 
 k-d-B-tree, EXCELL, Grid file 

 Mapping from n-D to 1-D 
 Z-order, Gray-order 

 Ad-hoc structures 
 R-tree, R*-tree, X-tree, … 

 In total: hundreds of data structures 
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Spatial indices: classification 

 Type of objects 
 For points (records cannot have a spatial extension) 

 For regions 

 Type of subdivision 
 On the space (splits are performed according to global 

considerations, à la linear hashing) 

 Good for uniform distributions, simple to implement 

 On the objects (splits are performed according to local 
considerations, à la B-tree) 

 Good for arbitrary distributions, hard to implement 

 Type of organization 
 Tree-/hash-based 
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Spatial indices: general considerations 

 Fundamental requirement (Local Order Preservation) 
 Group objects (points) in pages, guaranteeing that each page 

contains objects which are “close” in the n-D space 

 This prevents the use of hash functions,  
which are not order-preserving 

 The problem is not trivial, since in n-D a global order  
is not defined (does this sound familiar?) 

 In any case, some solutions define an order in n-D (à-la B+-tree) 

 General approach 
 The space is organized in regions (or cells) 

 Each cell is mapped (not always 1-1) to a page 
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k-d-tree (Bentley, 1975) 

 It is a main-memory structure 
 Non paged 

 Non balanced (any problem?) 

 Binary search tree 
 Each level is (cyclic) tagged with one of the n coordinates 

 Every node contains a separator, given by the median value  
of the interval that is being splitted 
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k-d-tree: example 

 Suppose that each leaf can accommodate up to 3 objects 
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k-d-tree: searching 

 We visit all branches overlapped with the query 
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k-d-tree: considerations 

 During insertion, we search for the leaf where the new object 
should be inserted 
 If this is full: split (downward) 

 The tree is not balanced 
 It should be periodically re-organized 

 Deletions are extremely complicated 

 Several variants which manage separators in different ways, 
e.g.: 
 BSP-tree uses arbitrary hyperplanes (non-parallel to axes) 

 VAMsplit kd-tree chooses the “best” split coordinate  
at each node, as the one with maximum variance 
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k-d-B-tree (Robinson, 1981) 

 Paged version of k-d-tree 

 The resulting structures resembles a B+-tree 

 Each node (page) corresponds to a (hyper-)rectangular region 
(box, brick) of the space, obtained as the union of children 
regions 

 Internally, nodes are managed as k-d-trees 
 The “size” of the tree depends on the capacity of a page 
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k-d-B-tree: example 
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k-d-B-tree: node overflow 

 If an index node (region) overflows,  
the situation is much complex than in B-tree 

 E.g.: split of data block E 
 We partition E, then A, and finally the root 
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k-d-B-tree: split 

 A balanced re-distribution is not always possible 

 No lower bound on memory usage (~50-70%) 
 In the example, was partitioned into A and A’ according to the 

first separator 

 Robinson algorithmo 
 We consider an hyperplane splitting nodes in a balanced way 

 Splits are propagated downward (to descendant nodes) 

 

20 



k-d-B-tree: Robinson algorithm 

 The A region is split into A’ and A’’ 
 D is split into D and D’ 
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hB-tree (Lomet & Salzberg, 1990) 

 Variant of k-d-B-tree 

 Regions can contain “holes” (hB = “holey brick”) 

 Positive effects: 
 Split of a data block: we can guarantee that, in the worst case,  

data are partitioned according to a 2:1 ratio 
(2/3 in one block and 1/3 in the other one) 

 Split of an index node: we obtain a balanced split  
(and thus a lower bound to the memory usage)  
without propagating splits to the descendant nodes 
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hB-tree: split of a data page 

 As in k-d-B-tree, each node is internally organized as a k-d-tree 

 The difference here is that a node can be “referenced”  
by multiple separations 
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hB-tree: split example (i) 

 Suppose that each page can contain up to 7 nodes 

 The root overflows 
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hB-tree: split example (ii) 
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EXCELL (Tamminen, 1982) 

 Uses a hash-based directory, regular grid in n dimensions 
 Each directory cell corresponds to a data page,  

but the converse is not necessarily true 

 The address of a cell is formed by interleaving coordinates bits 

 Extends extendible hashing to multiple dimensions 
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EXCELL: example 

 When a data page overflows, it is split and, for the directory, 
we can have one of two cases 
 If the block was referenced by two (or more) cells,  

we only update pointers 

 Otherwise, the directory is doubled, by using an additional bit 
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EXCELL: split (i) 
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 First case: A overflows and is split into A and F 

 It is sufficient to update the pointer in cell 001 



 Second case: C overflows and is split into C and G 

 We have to double the directory using an additional bit  
for coordinate B 

EXCELL: split (ii) 
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EXCELL: considerations 

 The same arguments used for extendible hashing apply here 

 Doubling the directory is sometimes not enough to solve  
the overflow of a bucket (why?) 

 It works well for uniform distribution of data 
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Grid file (Nievergelt et al., 1984) 

 Generalizes EXCELL, allowing to define arbitrarily sized intervals 
 To this aim, d scales are required, containing values used  

as separators for each dimension 

 In case of intervals defined by way of a binary partitioning, 
scales are analogous to the directory of dynamic hashing 
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Grid file: example 

 When a data page overflows, it is split and, for the directory, 
we can have one of two cases 
 If the block was referenced by two (or more) cells,  

we only update pointers 

 Otherwise, we add a separator to the directory 
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Grid file: split (i) 

 First case: C overflows and is split into C and F 

 It is sufficient to update the pointer of the cell 
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Grid file: split (ii) 

 Second case: D overflows and is split into D and G 

 We have to augment the directory using an additional 
separation, for example for coordinate A 
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Grid file: considerations 

 In case of non-uniform distributions, storing N points  
could require a number of cells which grows like O(Nd) 

 On the other hand, the regular structure of space partitioning 
greatly simplifies the resolution of window queries 

 Main problem: directory management 
 Usually, scales are stored in main memory 

 In (quasi-)static cases, the directory can be stored on disk  
as a multi-dimensional array 

 In dynaimic cases, it is necessary to paginate the directory, 
leading to multi-level grid files 
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Mono-dimensional sorting 

 We try to “linearize” the n-dimensional space so as to be able 
to exploit a mono-dimensional index, like the B+-tree 

 We obtain so-called “space-filling curves” 

 Local Order Preservation requirement 
 Points which are “close” in the n-D space  

should also be close in the linearization 
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Examples of curves (i) 

 Z-order 

 

 

 

 

 

 Peano-Hilbert 
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Examples of curves (ii) 

 Gray-order 

 

 

 

 

 

 Lexicographic  
order 
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Space-filling curves: considerations 

 As it is clear, no curve satisfies the local order preservation 
requirement 

 Solving window queries is therefore plagued by the same 
problems seen for multi-attribute B+-tree 
 Can we see analogies/equivalencies? 

 Nearest neighbor search is further complicated… 
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R-tree (Guttman, 1984) 

 Balanced and paginated tree-shaped structure,  
based on the hierarchical nesting of overlapping regions 

 Each node corresponds to a rectangular region,  
defined as the MBB containing all children regions 

 Storage utilization for each node varies from 100%  
to a minimum value (≤ 50%) which is a design parameter  
of R-tree 

 Management mechanisms similar to those of B+-tree,  
with the main difference that insertion of an object and 
possible splits can be managed according to different policies 
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R-tree: concept of MBB 

 MBB = Minimum Bounding Box 
 The smallest rectangle, with sides parallel to coordinate axes, 

containing all children regions 

 It is defined as the product of n intervals 
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R-tree: definition of MBB (i) 

 How many vertices has a n-dimensional (hyper-)rectangle? 2n 

 In order to define a (hyper-)rectangle we should specify  
the coordinates of all its vertices 

 Moreover, the algorithm for computing the smallest  
(hyper-)rectangle containing a set of N points has a complexity 
 O(N2) in 2-dim 

 O(N3) in 3-dim 

 No algorithm is known for dim>3 
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R-tree: definition of MBB (ii) 

 How many values are required for defining a box? 2n 

 It is sufficient to provide the coordinates  
of two any opposite vertices 

 

 

 

 

 

 What is the complexity of the algorithm for computing the MBB 
for a set of N points? O(N) 
 It is sufficient to find the minimum and maximum value  

for each coordinate 
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R-tree: comparison with B+-tree 

B+-tree 

 Balanced and paginated tree 

 Data are stored in leaves 

 Leaves are kept sorted 

 Data are organized into  
1-D intervals  
 Intervals do not overlap 

 This principle is recursively 
applied towarts the root 

 Point search follows  
a single path from root  
to a single leaf 

R-tree 

 Balanced and paginated tree 

 Data are stored in leaves 

 No data order exist 

 Data are organized into  
n-D intervals (MBB) 
 Intervals do overlap 

(characteristic of n-D 

space) 

 This principle is recursively 
applied towarts the root 

 Point search could follow  
multiple paths from root  
to multiple leaves 44 



R-tree: organization 
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R-tree: characteristics (i) 

 Leaf nodes 
 Contain entries with the form (key, RID),  

where key stores the record coordinates 

 Actually, R-tree could also store n-dim objects  
with a spatial extensione, with key=MBB 

 Internal nodes 
 Contain entries with the form (MBB, PID), where MBB stores  

the coordinates of the MBB containing children entries 

 Overall, each node contains entries with the form (key, ptr), 
where key is a “spatial” value 
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R-tree: characteristics (ii) 

 Each node contains a number m of entries which can vary 
between c and C 
 c≤C/2 is a storage utilization parameter 

 C depends on n and the page size 

 As usual, the root can violate the minimum utilization 
constraint and contain only two entries 
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R-tree: search (window query) 

 We have to retrieve all points included into a product  
of n intervals (that is, a box) 

 Such points could only be found in nodes whose MBB overlaps 
with the query region 

 E.g.: node N’ cannot contain records satisfying the query 
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R-tree: search example 
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R-tree: search algorithm 

 Consistent(E,q) 
 Input:  Entry E=(p,ptr) and search predicate q 

 Output:  if p & q == false then false else true 

 Both p and q are (hyper-)rectangles 

 Consistent returns true if and only if p and q have  
non-null overlap 
 Consistent is oblivious to the “shape” of q 

 Could also be used for different queries (range, NN) 

 It follows that the search can follow multiple paths  
within the tree 
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R-tree: construction algorithms 

 We need to specify key methods Union, (Compress, 
Decompress, ) Penalty, and PickSplit 

 Different “variants” of R-tree exist, each differing  
from the others on how such choices are implemented 

 We will see the implementation of the original R-tree  
and will discuss some variants 
 One of the most common is R*-tree (Beckmann et al., 1990) 
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R-tree: Union 

 Union(P) 
 Input:  Set of entries P = {(p1,ptr1),…,(pn,ptrn)} 

 Output:  A predicate r holding for all tuples reachable 
through one of the entries’ pointers 

 Both r and pjs are (hyper-)rectangles 

 We return the MBB containing all pjs 

 It is sufficient to compute the minimum and maximum value  
on each coordinate 
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 p 

R-tree: Penalty (i) 

 Penalty(E1,E2) 
 Input:  Entries E1 = (p1,ptr1) and E2 = (p2,ptr2) 

 Output:  A “penalty” value resulting from inserting E2  
 into the sub-tree rooted at E1 

 What is the best way to insert a point? 
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R-tree: Penalty (ii) 

 If p is contained in E1, the penalty is 0 

 Otherwise, the penalty is given by the increment of volume 
(area) of the MBB 
 However, if we are in a leaf, R*-tree considers  

the increment of intersection with other entries 

 Both criteria aim to obtain a tree with better performance: 
 Large volume: the chance of visiting the node during a query 

increases 

 Large overlap: the number of nodes visited during a query 
increases 
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R-tree: Picksplit (i) 

 PickSplit(P) 
 Input:  Set of di C+1 entries 

 Output:  two sets of entries, P1 and P2, with cardinality ≥ c 
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R-tree: Picksplit (ii) 

 Search for a split minimizing the sum of volumes  
of the two nodes 
 Unfortunately, it is a NP-hard problem, thus we use heuristics 

 Things gets worse in upper nodes 
 In particular, an overlap-free split is not guaranteed 
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R-tree: Picksplit (iii) 

 The criterion adopted by R*-tree is more complicated and 
considers both nodes volume and perimeter and their overlap 

 Moreover, R*-tree supports re-distribution in both overflow 
and underflow 
 All such choices are implemented through heuristics,  

since their efficiency is validated only experimentally 

 We obtain (slight) performance improvements  
for insertion, search, and storage utilization 
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