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Multi-dimensional queries 

 As we saw, B+-tree is able to solve queries  
involving multiple attributes 

 Which queries are solvable by exploiting  
a multi-attribute index? 

 The query evaluation is efficient enough? 
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Types of n-dimensional queries 

 A1 = v1, A2 = v2, … , An = vn (point query) 

 l1 ≤ A1 ≤ h1, l2 ≤ A2 ≤ h2, … , ln ≤ An ≤ hn (window query) 

 A1 ≈ v1, A2 ≈ v2, … , An ≈ vn (nearest neighbor query) 

 What if the data “value” is not a point? 
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Examples of use 

 Geographic/Spatial Information Systems 
 Coordinates of points 

 Places, cities 

 Objects with extension 

 Regions, streets, rivers 

 Multimedia Databases 
 Content-Based Retrieval 

 Representing content by way of numerical characteristics (features) 

 Similarity of content is assessed by evaluating similarity of features 

 … 
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Using B+-tree 

 Suppose we have a window query on 2 attributes (A,B) 
 Every interval represents 10% of the total 

 We expect to retrieve 1% of data 

 Possible solutions: 
 1 bi-dimensional B+-tree (A,B) 

 2 mono-dimensional B+-trees (A),(B) 
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1 bi-dimensional B+-tree (A,B) 

 Leaf capacity = 3 records 
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2 mono-dimensional B+-trees 

 In this case we access 20% of data 
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B+-tree efficiency 

 In both cases, too much wasted work 

 The reason is that points which are close in space are stored in 
distant leaves 
 In the first case, by the “linearization” of attributes 

 In the other case, by ignoring the other attribute 

 Multi-dimensional (spatial) indices try to maintain  
the spatial proximity of records 
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Spatial indexing 

 Issue emerged in the ’70s due to the insurgence of  
2/3-D problems 
 Cartography 

 Geographic Information Systems 

 VLSI 

 CAD 

 Recovered in the ’90s to solve problems posed  
by new applications 
 Multimedia DBs 

 Data mining 
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Spatial indices: different approaches 

 Derived by 1-D structures 
 k-d-B-tree, EXCELL, Grid file 

 Mapping from n-D to 1-D 
 Z-order, Gray-order 

 Ad-hoc structures 
 R-tree, R*-tree, X-tree, … 

 In total: hundreds of data structures 
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Spatial indices: classification 

 Type of objects 
 For points (records cannot have a spatial extension) 

 For regions 

 Type of subdivision 
 On the space (splits are performed according to global 

considerations, à la linear hashing) 

 Good for uniform distributions, simple to implement 

 On the objects (splits are performed according to local 
considerations, à la B-tree) 

 Good for arbitrary distributions, hard to implement 

 Type of organization 
 Tree-/hash-based 
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Spatial indices: general considerations 

 Fundamental requirement (Local Order Preservation) 
 Group objects (points) in pages, guaranteeing that each page 

contains objects which are “close” in the n-D space 

 This prevents the use of hash functions,  
which are not order-preserving 

 The problem is not trivial, since in n-D a global order  
is not defined (does this sound familiar?) 

 In any case, some solutions define an order in n-D (à-la B+-tree) 

 General approach 
 The space is organized in regions (or cells) 

 Each cell is mapped (not always 1-1) to a page 
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k-d-tree (Bentley, 1975) 

 It is a main-memory structure 
 Non paged 

 Non balanced (any problem?) 

 Binary search tree 
 Each level is (cyclic) tagged with one of the n coordinates 

 Every node contains a separator, given by the median value  
of the interval that is being splitted 

 

13 



k-d-tree: example 

 Suppose that each leaf can accommodate up to 3 objects 
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k-d-tree: searching 

 We visit all branches overlapped with the query 
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k-d-tree: considerations 

 During insertion, we search for the leaf where the new object 
should be inserted 
 If this is full: split (downward) 

 The tree is not balanced 
 It should be periodically re-organized 

 Deletions are extremely complicated 

 Several variants which manage separators in different ways, 
e.g.: 
 BSP-tree uses arbitrary hyperplanes (non-parallel to axes) 

 VAMsplit kd-tree chooses the “best” split coordinate  
at each node, as the one with maximum variance 
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k-d-B-tree (Robinson, 1981) 

 Paged version of k-d-tree 

 The resulting structures resembles a B+-tree 

 Each node (page) corresponds to a (hyper-)rectangular region 
(box, brick) of the space, obtained as the union of children 
regions 

 Internally, nodes are managed as k-d-trees 
 The “size” of the tree depends on the capacity of a page 
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k-d-B-tree: example 
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k-d-B-tree: node overflow 

 If an index node (region) overflows,  
the situation is much complex than in B-tree 

 E.g.: split of data block E 
 We partition E, then A, and finally the root 
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k-d-B-tree: split 

 A balanced re-distribution is not always possible 

 No lower bound on memory usage (~50-70%) 
 In the example, was partitioned into A and A’ according to the 

first separator 

 Robinson algorithmo 
 We consider an hyperplane splitting nodes in a balanced way 

 Splits are propagated downward (to descendant nodes) 
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k-d-B-tree: Robinson algorithm 

 The A region is split into A’ and A’’ 
 D is split into D and D’ 
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hB-tree (Lomet & Salzberg, 1990) 

 Variant of k-d-B-tree 

 Regions can contain “holes” (hB = “holey brick”) 

 Positive effects: 
 Split of a data block: we can guarantee that, in the worst case,  

data are partitioned according to a 2:1 ratio 
(2/3 in one block and 1/3 in the other one) 

 Split of an index node: we obtain a balanced split  
(and thus a lower bound to the memory usage)  
without propagating splits to the descendant nodes 
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hB-tree: split of a data page 

 As in k-d-B-tree, each node is internally organized as a k-d-tree 

 The difference here is that a node can be “referenced”  
by multiple separations 
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hB-tree: split example (i) 

 Suppose that each page can contain up to 7 nodes 

 The root overflows 
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hB-tree: split example (ii) 
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EXCELL (Tamminen, 1982) 

 Uses a hash-based directory, regular grid in n dimensions 
 Each directory cell corresponds to a data page,  

but the converse is not necessarily true 

 The address of a cell is formed by interleaving coordinates bits 

 Extends extendible hashing to multiple dimensions 
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EXCELL: example 

 When a data page overflows, it is split and, for the directory, 
we can have one of two cases 
 If the block was referenced by two (or more) cells,  

we only update pointers 

 Otherwise, the directory is doubled, by using an additional bit 
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EXCELL: split (i) 
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 First case: A overflows and is split into A and F 

 It is sufficient to update the pointer in cell 001 



 Second case: C overflows and is split into C and G 

 We have to double the directory using an additional bit  
for coordinate B 

EXCELL: split (ii) 
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EXCELL: considerations 

 The same arguments used for extendible hashing apply here 

 Doubling the directory is sometimes not enough to solve  
the overflow of a bucket (why?) 

 It works well for uniform distribution of data 
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Grid file (Nievergelt et al., 1984) 

 Generalizes EXCELL, allowing to define arbitrarily sized intervals 
 To this aim, d scales are required, containing values used  

as separators for each dimension 

 In case of intervals defined by way of a binary partitioning, 
scales are analogous to the directory of dynamic hashing 
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Grid file: example 

 When a data page overflows, it is split and, for the directory, 
we can have one of two cases 
 If the block was referenced by two (or more) cells,  

we only update pointers 

 Otherwise, we add a separator to the directory 
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Grid file: split (i) 

 First case: C overflows and is split into C and F 

 It is sufficient to update the pointer of the cell 
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Grid file: split (ii) 

 Second case: D overflows and is split into D and G 

 We have to augment the directory using an additional 
separation, for example for coordinate A 
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Grid file: considerations 

 In case of non-uniform distributions, storing N points  
could require a number of cells which grows like O(Nd) 

 On the other hand, the regular structure of space partitioning 
greatly simplifies the resolution of window queries 

 Main problem: directory management 
 Usually, scales are stored in main memory 

 In (quasi-)static cases, the directory can be stored on disk  
as a multi-dimensional array 

 In dynaimic cases, it is necessary to paginate the directory, 
leading to multi-level grid files 
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Mono-dimensional sorting 

 We try to “linearize” the n-dimensional space so as to be able 
to exploit a mono-dimensional index, like the B+-tree 

 We obtain so-called “space-filling curves” 

 Local Order Preservation requirement 
 Points which are “close” in the n-D space  

should also be close in the linearization 
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Examples of curves (i) 

 Z-order 

 

 

 

 

 

 Peano-Hilbert 
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Examples of curves (ii) 

 Gray-order 
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Space-filling curves: considerations 

 As it is clear, no curve satisfies the local order preservation 
requirement 

 Solving window queries is therefore plagued by the same 
problems seen for multi-attribute B+-tree 
 Can we see analogies/equivalencies? 

 Nearest neighbor search is further complicated… 
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R-tree (Guttman, 1984) 

 Balanced and paginated tree-shaped structure,  
based on the hierarchical nesting of overlapping regions 

 Each node corresponds to a rectangular region,  
defined as the MBB containing all children regions 

 Storage utilization for each node varies from 100%  
to a minimum value (≤ 50%) which is a design parameter  
of R-tree 

 Management mechanisms similar to those of B+-tree,  
with the main difference that insertion of an object and 
possible splits can be managed according to different policies 
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R-tree: concept of MBB 

 MBB = Minimum Bounding Box 
 The smallest rectangle, with sides parallel to coordinate axes, 

containing all children regions 

 It is defined as the product of n intervals 
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R-tree: definition of MBB (i) 

 How many vertices has a n-dimensional (hyper-)rectangle? 2n 

 In order to define a (hyper-)rectangle we should specify  
the coordinates of all its vertices 

 Moreover, the algorithm for computing the smallest  
(hyper-)rectangle containing a set of N points has a complexity 
 O(N2) in 2-dim 

 O(N3) in 3-dim 

 No algorithm is known for dim>3 
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R-tree: definition of MBB (ii) 

 How many values are required for defining a box? 2n 

 It is sufficient to provide the coordinates  
of two any opposite vertices 

 

 

 

 

 

 What is the complexity of the algorithm for computing the MBB 
for a set of N points? O(N) 
 It is sufficient to find the minimum and maximum value  

for each coordinate 
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R-tree: comparison with B+-tree 

B+-tree 

 Balanced and paginated tree 

 Data are stored in leaves 

 Leaves are kept sorted 

 Data are organized into  
1-D intervals  
 Intervals do not overlap 

 This principle is recursively 
applied towarts the root 

 Point search follows  
a single path from root  
to a single leaf 

R-tree 

 Balanced and paginated tree 

 Data are stored in leaves 

 No data order exist 

 Data are organized into  
n-D intervals (MBB) 
 Intervals do overlap 

(characteristic of n-D 

space) 

 This principle is recursively 
applied towarts the root 

 Point search could follow  
multiple paths from root  
to multiple leaves 44 



R-tree: organization 
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R-tree: characteristics (i) 

 Leaf nodes 
 Contain entries with the form (key, RID),  

where key stores the record coordinates 

 Actually, R-tree could also store n-dim objects  
with a spatial extensione, with key=MBB 

 Internal nodes 
 Contain entries with the form (MBB, PID), where MBB stores  

the coordinates of the MBB containing children entries 

 Overall, each node contains entries with the form (key, ptr), 
where key is a “spatial” value 
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R-tree: characteristics (ii) 

 Each node contains a number m of entries which can vary 
between c and C 
 c≤C/2 is a storage utilization parameter 

 C depends on n and the page size 

 As usual, the root can violate the minimum utilization 
constraint and contain only two entries 
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R-tree: search (window query) 

 We have to retrieve all points included into a product  
of n intervals (that is, a box) 

 Such points could only be found in nodes whose MBB overlaps 
with the query region 

 E.g.: node N’ cannot contain records satisfying the query 
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R-tree: search example 
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R-tree: search algorithm 

 Consistent(E,q) 
 Input:  Entry E=(p,ptr) and search predicate q 

 Output:  if p & q == false then false else true 

 Both p and q are (hyper-)rectangles 

 Consistent returns true if and only if p and q have  
non-null overlap 
 Consistent is oblivious to the “shape” of q 

 Could also be used for different queries (range, NN) 

 It follows that the search can follow multiple paths  
within the tree 
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R-tree: construction algorithms 

 We need to specify key methods Union, (Compress, 
Decompress, ) Penalty, and PickSplit 

 Different “variants” of R-tree exist, each differing  
from the others on how such choices are implemented 

 We will see the implementation of the original R-tree  
and will discuss some variants 
 One of the most common is R*-tree (Beckmann et al., 1990) 
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R-tree: Union 

 Union(P) 
 Input:  Set of entries P = {(p1,ptr1),…,(pn,ptrn)} 

 Output:  A predicate r holding for all tuples reachable 
through one of the entries’ pointers 

 Both r and pjs are (hyper-)rectangles 

 We return the MBB containing all pjs 

 It is sufficient to compute the minimum and maximum value  
on each coordinate 
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 p 

R-tree: Penalty (i) 

 Penalty(E1,E2) 
 Input:  Entries E1 = (p1,ptr1) and E2 = (p2,ptr2) 

 Output:  A “penalty” value resulting from inserting E2  
 into the sub-tree rooted at E1 

 What is the best way to insert a point? 
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R-tree: Penalty (ii) 

 If p is contained in E1, the penalty is 0 

 Otherwise, the penalty is given by the increment of volume 
(area) of the MBB 
 However, if we are in a leaf, R*-tree considers  

the increment of intersection with other entries 

 Both criteria aim to obtain a tree with better performance: 
 Large volume: the chance of visiting the node during a query 

increases 

 Large overlap: the number of nodes visited during a query 
increases 
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R-tree: Picksplit (i) 

 PickSplit(P) 
 Input:  Set of di C+1 entries 

 Output:  two sets of entries, P1 and P2, with cardinality ≥ c 
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R-tree: Picksplit (ii) 

 Search for a split minimizing the sum of volumes  
of the two nodes 
 Unfortunately, it is a NP-hard problem, thus we use heuristics 

 Things gets worse in upper nodes 
 In particular, an overlap-free split is not guaranteed 
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R-tree: Picksplit (iii) 

 The criterion adopted by R*-tree is more complicated and 
considers both nodes volume and perimeter and their overlap 

 Moreover, R*-tree supports re-distribution in both overflow 
and underflow 
 All such choices are implemented through heuristics,  

since their efficiency is validated only experimentally 

 We obtain (slight) performance improvements  
for insertion, search, and storage utilization 
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