
n-Dimensional Index Structures

Tecnologie delle Basi di Dati M

Multi-dimensional queries

 As we saw, B+-tree is able to solve queries
involving multiple attributes

 Which queries are solvable by exploiting
a multi-attribute index?

 The query evaluation is efficient enough?

2

Types of n-dimensional queries

 A1 = v1, A2 = v2, … , An = vn (point query)

 l1 ≤ A1 ≤ h1, l2 ≤ A2 ≤ h2, … , ln ≤ An ≤ hn (window query)

 A1 ≈ v1, A2 ≈ v2, … , An ≈ vn (nearest neighbor query)

 What if the data “value” is not a point?

3

Examples of use

 Geographic/Spatial Information Systems
 Coordinates of points

 Places, cities

 Objects with extension

 Regions, streets, rivers

 Multimedia Databases
 Content-Based Retrieval

 Representing content by way of numerical characteristics (features)

 Similarity of content is assessed by evaluating similarity of features

 …

4

Using B+-tree

 Suppose we have a window query on 2 attributes (A,B)
 Every interval represents 10% of the total

 We expect to retrieve 1% of data

 Possible solutions:
 1 bi-dimensional B+-tree (A,B)

 2 mono-dimensional B+-trees (A),(B)

5

1 bi-dimensional B+-tree (A,B)

 Leaf capacity = 3 records

6

B

A

2 mono-dimensional B+-trees

 In this case we access 20% of data

7

B

A
A

B

B+-tree efficiency

 In both cases, too much wasted work

 The reason is that points which are close in space are stored in
distant leaves
 In the first case, by the “linearization” of attributes

 In the other case, by ignoring the other attribute

 Multi-dimensional (spatial) indices try to maintain
the spatial proximity of records

8

Spatial indexing

 Issue emerged in the ’70s due to the insurgence of
2/3-D problems
 Cartography

 Geographic Information Systems

 VLSI

 CAD

 Recovered in the ’90s to solve problems posed
by new applications
 Multimedia DBs

 Data mining

9

Spatial indices: different approaches

 Derived by 1-D structures
 k-d-B-tree, EXCELL, Grid file

 Mapping from n-D to 1-D
 Z-order, Gray-order

 Ad-hoc structures
 R-tree, R*-tree, X-tree, …

 In total: hundreds of data structures

10

Spatial indices: classification

 Type of objects
 For points (records cannot have a spatial extension)

 For regions

 Type of subdivision
 On the space (splits are performed according to global

considerations, à la linear hashing)

 Good for uniform distributions, simple to implement

 On the objects (splits are performed according to local
considerations, à la B-tree)

 Good for arbitrary distributions, hard to implement

 Type of organization
 Tree-/hash-based

11

Spatial indices: general considerations

 Fundamental requirement (Local Order Preservation)
 Group objects (points) in pages, guaranteeing that each page

contains objects which are “close” in the n-D space

 This prevents the use of hash functions,
which are not order-preserving

 The problem is not trivial, since in n-D a global order
is not defined (does this sound familiar?)

 In any case, some solutions define an order in n-D (à-la B+-tree)

 General approach
 The space is organized in regions (or cells)

 Each cell is mapped (not always 1-1) to a page

12

k-d-tree (Bentley, 1975)

 It is a main-memory structure
 Non paged

 Non balanced (any problem?)

 Binary search tree
 Each level is (cyclic) tagged with one of the n coordinates

 Every node contains a separator, given by the median value
of the interval that is being splitted

13

k-d-tree: example

 Suppose that each leaf can accommodate up to 3 objects

14

B

A

B1

B2

A1 A2

A

B

≤ A1 >A1

A

≤ B1 >B1

≤ A2 >A2

B

k-d-tree: searching

 We visit all branches overlapped with the query

15

B

A

B1

B2

A1 A2

A

B

≤ A1 >A1

A

≤ B1 >B1

≤ A2 >A2

B

k-d-tree: considerations

 During insertion, we search for the leaf where the new object
should be inserted
 If this is full: split (downward)

 The tree is not balanced
 It should be periodically re-organized

 Deletions are extremely complicated

 Several variants which manage separators in different ways,
e.g.:
 BSP-tree uses arbitrary hyperplanes (non-parallel to axes)

 VAMsplit kd-tree chooses the “best” split coordinate
at each node, as the one with maximum variance

16

k-d-B-tree (Robinson, 1981)

 Paged version of k-d-tree

 The resulting structures resembles a B+-tree

 Each node (page) corresponds to a (hyper-)rectangular region
(box, brick) of the space, obtained as the union of children
regions

 Internally, nodes are managed as k-d-trees
 The “size” of the tree depends on the capacity of a page

17

k-d-B-tree: example

18

F

H G

B

C

A

K

J

I

D E

B

A

B1

A1

root

A B

C

D E F G H I J K

root

≤ A1 >A1

>B1 ≤ B1

A C B

k-d-B-tree: node overflow

 If an index node (region) overflows,
the situation is much complex than in B-tree

 E.g.: split of data block E
 We partition E, then A, and finally the root

19

F

H G

K

J

I
D

E

B

A

E’

A’

B

C

A

B

A

R’’ R’

B

A

k-d-B-tree: split

 A balanced re-distribution is not always possible

 No lower bound on memory usage (~50-70%)
 In the example, was partitioned into A and A’ according to the

first separator

 Robinson algorithmo
 We consider an hyperplane splitting nodes in a balanced way

 Splits are propagated downward (to descendant nodes)

20

k-d-B-tree: Robinson algorithm

 The A region is split into A’ and A’’
 D is split into D and D’

21

F

H G

K

J

I

D E

B

A

E’

A’

B

C

A

B

A

R’’ R’

B

A

D’

hB-tree (Lomet & Salzberg, 1990)

 Variant of k-d-B-tree

 Regions can contain “holes” (hB = “holey brick”)

 Positive effects:
 Split of a data block: we can guarantee that, in the worst case,

data are partitioned according to a 2:1 ratio
(2/3 in one block and 1/3 in the other one)

 Split of an index node: we obtain a balanced split
(and thus a lower bound to the memory usage)
without propagating splits to the descendant nodes

22

hB-tree: split of a data page

 As in k-d-B-tree, each node is internally organized as a k-d-tree

 The difference here is that a node can be “referenced”
by multiple separations

23

A B

≤ A1 >A1

>B1 ≤ B1

A A B

B1

A1

hB-tree: split example (i)

 Suppose that each page can contain up to 7 nodes

 The root overflows

24

A B

G

F G

E

E D

C

D

B

A

G

F

B

A

C

E

hB-tree: split example (ii)

B

A

G

F G

E

E D

C

N”

N” N’

Root node

Node N’ Node N”

“external”

D

B

A

G

F

B

A

C

E N’

N”

25

EXCELL (Tamminen, 1982)

 Uses a hash-based directory, regular grid in n dimensions
 Each directory cell corresponds to a data page,

but the converse is not necessarily true

 The address of a cell is formed by interleaving coordinates bits

 Extends extendible hashing to multiple dimensions

26

EXCELL: example

 When a data page overflows, it is split and, for the directory,
we can have one of two cases
 If the block was referenced by two (or more) cells,

we only update pointers

 Otherwise, the directory is doubled, by using an additional bit

27

Directory

A B C D E

Data blocks

B

A

A
001

B
100

B
101

C
010

D
011

E
110

E
111

00 01 10 11

A
000

0

1

EXCELL: split (i)

28

A B C D E

Data blocks

F

Directory

B

A

F
001

B
100

B
101

C
010

D
011

E
110

E
111

00 01 10 11

A
000

0

1

 First case: A overflows and is split into A and F

 It is sufficient to update the pointer in cell 001

 Second case: C overflows and is split into C and G

 We have to double the directory using an additional bit
for coordinate B

EXCELL: split (ii)

29

A B C D E

Data blocks

F G

Directory

B

A

F
0010

B
1000

B
1010

C
0100

D
0110

E
1100

E
1110

00 01 10 11

A
0000

A
0001

F
0011

B
1001

B
1011

G
0101

D
0111

E
1101

E
1111

00

01

10

11

EXCELL: considerations

 The same arguments used for extendible hashing apply here

 Doubling the directory is sometimes not enough to solve
the overflow of a bucket (why?)

 It works well for uniform distribution of data

30

Grid file (Nievergelt et al., 1984)

 Generalizes EXCELL, allowing to define arbitrarily sized intervals
 To this aim, d scales are required, containing values used

as separators for each dimension

 In case of intervals defined by way of a binary partitioning,
scales are analogous to the directory of dynamic hashing

31

Grid file: example

 When a data page overflows, it is split and, for the directory,
we can have one of two cases
 If the block was referenced by two (or more) cells,

we only update pointers

 Otherwise, we add a separator to the directory

32

Directory

A B C D E

Data blocks

B

A

C

A C E

A

E B C

A2 A1

B1

B2

D

Grid file: split (i)

 First case: C overflows and is split into C and F

 It is sufficient to update the pointer of the cell

33

Directory

A B C D E

Data blocks

B

A

F

A C E

A

E B C

A2 A1

B1

B2

D

F

Grid file: split (ii)

 Second case: D overflows and is split into D and G

 We have to augment the directory using an additional
separation, for example for coordinate A

34

Directory

A B C D E

Data blocks

B

A

F D

A C E E

A

E B C E

A2 A3 A1

B1

B2

G

F G

Grid file: considerations

 In case of non-uniform distributions, storing N points
could require a number of cells which grows like O(Nd)

 On the other hand, the regular structure of space partitioning
greatly simplifies the resolution of window queries

 Main problem: directory management
 Usually, scales are stored in main memory

 In (quasi-)static cases, the directory can be stored on disk
as a multi-dimensional array

 In dynaimic cases, it is necessary to paginate the directory,
leading to multi-level grid files

35

Mono-dimensional sorting

 We try to “linearize” the n-dimensional space so as to be able
to exploit a mono-dimensional index, like the B+-tree

 We obtain so-called “space-filling curves”

 Local Order Preservation requirement
 Points which are “close” in the n-D space

should also be close in the linearization

36

Examples of curves (i)

 Z-order

 Peano-Hilbert

37

B

A

B

A

B

A

B

A

Examples of curves (ii)

 Gray-order

 Lexicographic
order

38

B

A

B

A

B

A

B

A

Space-filling curves: considerations

 As it is clear, no curve satisfies the local order preservation
requirement

 Solving window queries is therefore plagued by the same
problems seen for multi-attribute B+-tree
 Can we see analogies/equivalencies?

 Nearest neighbor search is further complicated…

39

R-tree (Guttman, 1984)

 Balanced and paginated tree-shaped structure,
based on the hierarchical nesting of overlapping regions

 Each node corresponds to a rectangular region,
defined as the MBB containing all children regions

 Storage utilization for each node varies from 100%
to a minimum value (≤ 50%) which is a design parameter
of R-tree

 Management mechanisms similar to those of B+-tree,
with the main difference that insertion of an object and
possible splits can be managed according to different policies

40

R-tree: concept of MBB

 MBB = Minimum Bounding Box
 The smallest rectangle, with sides parallel to coordinate axes,

containing all children regions

 It is defined as the product of n intervals

41

2-D box 3-D box

R-tree: definition of MBB (i)

 How many vertices has a n-dimensional (hyper-)rectangle? 2n

 In order to define a (hyper-)rectangle we should specify
the coordinates of all its vertices

 Moreover, the algorithm for computing the smallest
(hyper-)rectangle containing a set of N points has a complexity
 O(N2) in 2-dim

 O(N3) in 3-dim

 No algorithm is known for dim>3

42

R-tree: definition of MBB (ii)

 How many values are required for defining a box? 2n

 It is sufficient to provide the coordinates
of two any opposite vertices

 What is the complexity of the algorithm for computing the MBB
for a set of N points? O(N)
 It is sufficient to find the minimum and maximum value

for each coordinate

43

R-tree: comparison with B+-tree

B+-tree

 Balanced and paginated tree

 Data are stored in leaves

 Leaves are kept sorted

 Data are organized into
1-D intervals
 Intervals do not overlap

 This principle is recursively
applied towarts the root

 Point search follows
a single path from root
to a single leaf

R-tree

 Balanced and paginated tree

 Data are stored in leaves

 No data order exist

 Data are organized into
n-D intervals (MBB)
 Intervals do overlap

(characteristic of n-D

space)

 This principle is recursively
applied towarts the root

 Point search could follow
multiple paths from root
to multiple leaves 44

R-tree: organization

45

D

A B C

…………………………... P

N O P I J K L M D E F G H

A B C

G D

E

H
F

P
O

N

L

I

J

K

M

A

C

B

R-tree: characteristics (i)

 Leaf nodes
 Contain entries with the form (key, RID),

where key stores the record coordinates

 Actually, R-tree could also store n-dim objects
with a spatial extensione, with key=MBB

 Internal nodes
 Contain entries with the form (MBB, PID), where MBB stores

the coordinates of the MBB containing children entries

 Overall, each node contains entries with the form (key, ptr),
where key is a “spatial” value

46

R-tree: characteristics (ii)

 Each node contains a number m of entries which can vary
between c and C
 c≤C/2 is a storage utilization parameter

 C depends on n and the page size

 As usual, the root can violate the minimum utilization
constraint and contain only two entries

47

R-tree: search (window query)

 We have to retrieve all points included into a product
of n intervals (that is, a box)

 Such points could only be found in nodes whose MBB overlaps
with the query region

 E.g.: node N’ cannot contain records satisfying the query

48

query

Node N

Node N’

q

R-tree: search example

49

D

A B C

…………………………... P

N O P I J K L M D E F G H

A B C

G D

E

H
F

P
O

N

L

I

J

K

M

A

C

B

R-tree: search algorithm

 Consistent(E,q)
 Input: Entry E=(p,ptr) and search predicate q

 Output: if p & q == false then false else true

 Both p and q are (hyper-)rectangles

 Consistent returns true if and only if p and q have
non-null overlap
 Consistent is oblivious to the “shape” of q

 Could also be used for different queries (range, NN)

 It follows that the search can follow multiple paths
within the tree

50

R-tree: construction algorithms

 We need to specify key methods Union, (Compress,
Decompress,) Penalty, and PickSplit

 Different “variants” of R-tree exist, each differing
from the others on how such choices are implemented

 We will see the implementation of the original R-tree
and will discuss some variants
 One of the most common is R*-tree (Beckmann et al., 1990)

51

R-tree: Union

 Union(P)
 Input: Set of entries P = {(p1,ptr1),…,(pn,ptrn)}

 Output: A predicate r holding for all tuples reachable
through one of the entries’ pointers

 Both r and pjs are (hyper-)rectangles

 We return the MBB containing all pjs

 It is sufficient to compute the minimum and maximum value
on each coordinate

52

 p

R-tree: Penalty (i)

 Penalty(E1,E2)
 Input: Entries E1 = (p1,ptr1) and E2 = (p2,ptr2)

 Output: A “penalty” value resulting from inserting E2
 into the sub-tree rooted at E1

 What is the best way to insert a point?

53

A

C

B

 p

A

C

B

R-tree: Penalty (ii)

 If p is contained in E1, the penalty is 0

 Otherwise, the penalty is given by the increment of volume
(area) of the MBB
 However, if we are in a leaf, R*-tree considers

the increment of intersection with other entries

 Both criteria aim to obtain a tree with better performance:
 Large volume: the chance of visiting the node during a query

increases

 Large overlap: the number of nodes visited during a query
increases

54

R-tree: Picksplit (i)

 PickSplit(P)
 Input: Set of di C+1 entries

 Output: two sets of entries, P1 and P2, with cardinality ≥ c

55

p
N

C = 16

c = 6

p N1

N2

p N1
N2

?

R-tree: Picksplit (ii)

 Search for a split minimizing the sum of volumes
of the two nodes
 Unfortunately, it is a NP-hard problem, thus we use heuristics

 Things gets worse in upper nodes
 In particular, an overlap-free split is not guaranteed

56

C = 7

c = 3

N

N1

N2

N1

N2

?

R-tree: Picksplit (iii)

 The criterion adopted by R*-tree is more complicated and
considers both nodes volume and perimeter and their overlap

 Moreover, R*-tree supports re-distribution in both overflow
and underflow
 All such choices are implemented through heuristics,

since their efficiency is validated only experimentally

 We obtain (slight) performance improvements
for insertion, search, and storage utilization

57

