n-Dimensional Index Structures

Tecnologie delle Basi di Dati M

Multi-dimensional queries

- As we saw, B^{+}-tree is able to solve queries involving multiple attributes
- Which queries are solvable by exploiting a multi-attribute index?
- The query evaluation is efficient enough?

Types of n-dimensional queries

- $A_{1}=v_{1}, A_{2}=v_{2}, \ldots, A_{n}=v_{n}$ (point query)
- $I_{1} \leq A_{1} \leq h_{1}, I_{2} \leq A_{2} \leq h_{2}, \ldots, I_{n} \leq A_{n} \leq h_{n}$ (window query)
- $A_{1} \approx v_{1}, A_{2} \approx v_{2}, \ldots, A_{n} \approx v_{n}$ (nearest neighbor query)
- What if the data "value" is not a point?

Examples of use

- Geographic/Spatial Information Systems
- Coordinates of points
- Places, cities
- Objects with extension
- Regions, streets, rivers
- Multimedia Databases
- Content-Based Retrieval
- Representing content by way of numerical characteristics (features)
- Similarity of content is assessed by evaluating similarity of features

Using B^{+}-tree

- Suppose we have a window query on 2 attributes (A, B)
- Every interval represents 10% of the total
- We expect to retrieve 1% of data
- Possible solutions:
- 1 bi-dimensional B^{+}-tree (A, B)
- 2 mono-dimensional B^{+}-trees (A),(B)

1 bi-dimensional B^{+}-tree (A, B)

- Leaf capacity $=3$ records

2 mono-dimensional B^{+}-trees

- In this case we access 20% of data

B^{+}-tree efficiency

- In both cases, too much wasted work
- The reason is that points which are close in space are stored in distant leaves
- In the first case, by the "linearization" of attributes
- In the other case, by ignoring the other attribute
- Multi-dimensional (spatial) indices try to maintain the spatial proximity of records

Spatial indexing

- Issue emerged in the '70s due to the insurgence of 2/3-D problems
- Cartography
- Geographic Information Systems
- VLSI
- CAD
- Recovered in the '90s to solve problems posed by new applications
- Multimedia DBs
- Data mining

Spatial indices: different approaches

- Derived by 1-D structures
- k-d-B-tree, EXCELL, Grid file
- Mapping from n-D to 1-D
- Z-order, Gray-order
- Ad-hoc structures
- R-tree, R*-tree, X-tree, ...
- In total: hundreds of data structures

Spatial indices: classification

- Type of objects
- For points (records cannot have a spatial extension)
- For regions
- Type of subdivision
- On the space (splits are performed according to global considerations, à la linear hashing)
- Good for uniform distributions, simple to implement
- On the objects (splits are performed according to local considerations, à la B-tree)
- Good for arbitrary distributions, hard to implement
- Type of organization
- Tree-/hash-based

Spatial indices: general considerations

- Fundamental requirement (Local Order Preservation)
- Group objects (points) in pages, guaranteeing that each page contains objects which are "close" in the n-D space
- This prevents the use of hash functions, which are not order-preserving
- The problem is not trivial, since in n-D a global order is not defined (does this sound familiar?)
- In any case, some solutions define an order in n-D (à-la B+-tree)
- General approach
- The space is organized in regions (or cells)
- Each cell is mapped (not always 1-1) to a page

k-d-tree (Bentley, 1975)

- It is a main-memory structure
- Non paged
- Non balanced (any problem?)
- Binary search tree
- Each level is (cyclic) tagged with one of the n coordinates
- Every node contains a separator, given by the median value of the interval that is being splitted

k-d-tree: example

- Suppose that each leaf can accommodate up to 3 objects

k-d-tree: searching

- We visit all branches overlapped with the query

k-d-tree: considerations

- During insertion, we search for the leaf where the new object should be inserted
- If this is full: split (downward)
- The tree is not balanced
- It should be periodically re-organized
- Deletions are extremely complicated
- Several variants which manage separators in different ways, e.g.:
- BSP-tree uses arbitrary hyperplanes (non-parallel to axes)
- VAMsplit kd-tree chooses the "best" split coordinate at each node, as the one with maximum variance

k-d-B-tree (Robinson, 1981)

- Paged version of k-d-tree
- The resulting structures resembles a B^{+}-tree
- Each node (page) corresponds to a (hyper-)rectangular region (box, brick) of the space, obtained as the union of children regions
- Internally, nodes are managed as k-d-trees
- The "size" of the tree depends on the capacity of a page

k-d-B-tree: example

k-d-B-tree: node overflow

- If an index node (region) overflows, the situation is much complex than in B-tree
- E.g.: split of data block E
- We partition E, then A, and finally the root

k-d-B-tree: split

- A balanced re-distribution is not always possible
- No lower bound on memory usage ($\sim 50-70 \%$)
- In the example, was partitioned into A and A^{\prime} according to the first separator
- Robinson algorithmo
- We consider an hyperplane splitting nodes in a balanced way
- Splits are propagated downward (to descendant nodes)

k-d-B-tree: Robinson algorithm

- The A region is split into A^{\prime} and $A^{\prime \prime}$
- D is split into D and D^{\prime}

hB-tree (Lomet \& Salzberg, 1990)

- Variant of k-d-B-tree
- Regions can contain "holes" (hB = "holey brick")
- Positive effects:
- Split of a data block: we can guarantee that, in the worst case, data are partitioned according to a 2:1 ratio ($2 / 3$ in one block and $1 / 3$ in the other one)
- Split of an index node: we obtain a balanced split (and thus a lower bound to the memory usage) without propagating splits to the descendant nodes

hB-tree: split of a data page

- As in k-d-B-tree, each node is internally organized as a k-d-tree
- The difference here is that a node can be "referenced" by multiple separations

hB-tree: split example (i)

- Suppose that each page can contain up to 7 nodes
- The root overflows

hB-tree: split example (ii)

EXCELL (Tamminen, 1982)

- Uses a hash-based directory, regular grid in n dimensions
- Each directory cell corresponds to a data page, but the converse is not necessarily true
- The address of a cell is formed by interleaving coordinates bits
- Extends extendible hashing to multiple dimensions

EXCELL: example

- When a data page overflows, it is split and, for the directory, we can have one of two cases
- If the block was referenced by two (or more) cells, we only update pointers
- Otherwise, the directory is doubled, by using an additional bit

EXCELL: split (i)

- First case: A overflows and is split into A and F
- It is sufficient to update the pointer in cell 001

EXCELL: split (ii)

- Second case: C overflows and is split into C and G
- We have to double the directory using an additional bit for coordinate B

EXCELL: considerations

- The same arguments used for extendible hashing apply here
- Doubling the directory is sometimes not enough to solve the overflow of a bucket (why?)
- It works well for uniform distribution of data

Grid file (Nievergelt et al., 1984)

- Generalizes EXCELL, allowing to define arbitrarily sized intervals
- To this aim, d scales are required, containing values used as separators for each dimension
- In case of intervals defined by way of a binary partitioning, scales are analogous to the directory of dynamic hashing

Grid file: example

- When a data page overflows, it is split and, for the directory, we can have one of two cases
- If the block was referenced by two (or more) cells, we only update pointers
- Otherwise, we add a separator to the directory

Grid file: split (i)

- First case: C overflows and is split into C and F
- It is sufficient to update the pointer of the cell

Grid file: split (ii)

- Second case: D overflows and is split into D and G
- We have to augment the directory using an additional separation, for example for coordinate A

Grid file: considerations

- In case of non-uniform distributions, storing N points could require a number of cells which grows like $\mathrm{O}\left(\mathrm{N}^{\mathrm{d}}\right)$
- On the other hand, the regular structure of space partitioning greatly simplifies the resolution of window queries
- Main problem: directory management
- Usually, scales are stored in main memory
- In (quasi-)static cases, the directory can be stored on disk as a multi-dimensional array
- In dynaimic cases, it is necessary to paginate the directory, leading to multi-level grid files

Mono-dimensional sorting

- We try to "linearize" the n-dimensional space so as to be able to exploit a mono-dimensional index, like the B^{+}-tree
- We obtain so-called "space-filling curves"
- Local Order Preservation requirement
- Points which are "close" in the n-D space should also be close in the linearization

Examples of curves (i)

- Z-order

- Peano-Hilbert

Examples of curves (ii)

- Gray-order

- Lexicographic order

Space-filling curves: considerations

- As it is clear, no curve satisfies the local order preservation requirement
- Solving window queries is therefore plagued by the same problems seen for multi-attribute B^{+}-tree
- Can we see analogies/equivalencies?
- Nearest neighbor search is further complicated...

R-tree (Guttman, 1984)

- Balanced and paginated tree-shaped structure, based on the hierarchical nesting of overlapping regions
- Each node corresponds to a rectangular region, defined as the MBB containing all children regions
- Storage utilization for each node varies from 100% to a minimum value ($\leq 50 \%$) which is a design parameter of R-tree
- Management mechanisms similar to those of B^{+}-tree, with the main difference that insertion of an object and possible splits can be managed according to different policies

R-tree: concept of MBB

- $\mathrm{MBB}=$ Minimum Bounding Box
- The smallest rectangle, with sides parallel to coordinate axes, containing all children regions
- It is defined as the product of n intervals

R-tree: definition of MBB (i)

- How many vertices has a n-dimensional (hyper-)rectangle? 2^{n}
- In order to define a (hyper-)rectangle we should specify the coordinates of all its vertices
- Moreover, the algorithm for computing the smallest
(hyper-)rectangle containing a set of N points has a complexity
- O(N2) in 2-dim
- $O\left(N^{3}\right)$ in 3-dim
- No algorithm is known for dim>3

R-tree: definition of MBB (ii)

- How many values are required for defining a box? $2 n$
- It is sufficient to provide the coordinates of two any opposite vertices

- What is the complexity of the algorithm for computing the MBB for a set of N points? $O(N)$
- It is sufficient to find the minimum and maximum value for each coordinate

R-tree: comparison with B^{+}-tree

$$
\mathrm{B}^{+} \text {-tree }
$$

- Balanced and paginated tree
- Data are stored in leaves
- Leaves are kept sorted
- Data are organized into 1-D intervals
- Intervals do not overlap
- This principle is recursively applied towarts the root
- Point search follows a single path from root to a single leaf

R-tree

- Balanced and paginated tree
- Data are stored in leaves
- No data order exist
- Data are organized into n-D intervals (MBB)
- Intervals do overlap (characteristic of n-D space)
- This principle is recursively applied towarts the root
- Point search could follow multiple paths from root to multiple leaves

R-tree: organization

R-tree: characteristics (i)

- Leaf nodes
- Contain entries with the form (key, RID), where key stores the record coordinates
- Actually, R-tree could also store n-dim objects with a spatial extensione, with $k e y=M B B$
- Internal nodes
- Contain entries with the form (MBB, PID), where MBB stores the coordinates of the MBB containing children entries
- Overall, each node contains entries with the form (key, ptr), where key is a "spatial" value

R-tree: characteristics (ii)

- Each node contains a number m of entries which can vary between c and C
- $c \leq C / 2$ is a storage utilization parameter
- C depends on n and the page size
- As usual, the root can violate the minimum utilization constraint and contain only two entries

R-tree: search (window query)

- We have to retrieve all points included into a product of n intervals (that is, a box)
- Such points could only be found in nodes whose MBB overlaps with the query region
- E.g.: node N' cannot contain records satisfying the query

Node N'

R-tree: search example

R-tree: search algorithm

- Consistent(E,q)
- Input: Entry $\mathrm{E}=(\mathrm{p}, \mathrm{ptr})$ and search predicate q
- Output: if p \& $q==$ false then false else true
- Both p and q are (hyper-)rectangles
- Consistent returns true if and only if p and q have non-null overlap
- Consistent is oblivious to the "shape" of q
- Could also be used for different queries (range, NN)
- It follows that the search can follow multiple paths within the tree

R-tree: construction algorithms

- We need to specify key methods Union, (Compress, Decompress,) Penalty, and PickSplit
- Different "variants" of R-tree exist, each differing from the others on how such choices are implemented
- We will see the implementation of the original R-tree and will discuss some variants
- One of the most common is R*-tree (Beckmann et al., 1990)

R-tree: Union

- Union(P)
- Input: Set of entries $\left.P=\left\{\left(p_{1}, \text { ptr }_{1}\right)_{, \ldots,\left(p_{n},\right.} \mathrm{ptr}_{n}\right)\right\}$
- Output: A predicate r holding for all tuples reachable through one of the entries' pointers
- Both r and p_{j} s are (hyper-)rectangles
- We return the MBB containing all $p_{j} s$
- It is sufficient to compute the minimum and maximum value on each coordinate

R-tree: Penalty (i)

- Penalty $\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$
- Input: Entries $E_{1}=\left(p_{1}\right.$, ptr $\left._{1}\right)$ and $E_{2}=\left(p_{2}\right.$, ptr $\left._{2}\right)$
- Output: A "penalty" value resulting from inserting E_{2} into the sub-tree rooted at E_{1}
- What is the best way to insert a point?

R-tree: Penalty (ii)

- If p is contained in E_{1}, the penalty is 0
- Otherwise, the penalty is given by the increment of volume (area) of the MBB
- However, if we are in a leaf, R*-tree considers the increment of intersection with other entries
- Both criteria aim to obtain a tree with better performance:
- Large volume: the chance of visiting the node during a query increases
- Large overlap: the number of nodes visited during a query increases

R-tree: Picksplit (i)

- PickSplit(P)
- Input: Set of di C+1 entries
- Output: two sets of entries, P_{1} and P_{2}, with cardinality $\geq \mathrm{c}$

R-tree: Picksplit (ii)

- Search for a split minimizing the sum of volumes of the two nodes
- Unfortunately, it is a NP-hard problem, thus we use heuristics
- Things gets worse in upper nodes
- In particular, an overlap-free split is not guaranteed

R-tree: Picksplit (iii)

- The criterion adopted by R^{*}-tree is more complicated and considers both nodes volume and perimeter and their overlap
- Moreover, R^{*}-tree supports re-distribution in both overflow and underflow
- All such choices are implemented through heuristics, since their efficiency is validated only experimentally
- We obtain (slight) performance improvements for insertion, search, and storage utilization

