
n-Dimensional Index Structures

Tecnologie delle Basi di Dati M

Multi-dimensional queries

 As we saw, B+-tree is able to solve queries
involving multiple attributes

 Which queries are solvable by exploiting
a multi-attribute index?

 The query evaluation is efficient enough?

2

Types of n-dimensional queries

 A1 = v1, A2 = v2, … , An = vn (point query)

 l1 ≤ A1 ≤ h1, l2 ≤ A2 ≤ h2, … , ln ≤ An ≤ hn (window query)

 A1 ≈ v1, A2 ≈ v2, … , An ≈ vn (nearest neighbor query)

 What if the data “value” is not a point?

3

Examples of use

 Geographic/Spatial Information Systems
 Coordinates of points

 Places, cities

 Objects with extension

 Regions, streets, rivers

 Multimedia Databases
 Content-Based Retrieval

 Representing content by way of numerical characteristics (features)

 Similarity of content is assessed by evaluating similarity of features

 …

4

Using B+-tree

 Suppose we have a window query on 2 attributes (A,B)
 Every interval represents 10% of the total

 We expect to retrieve 1% of data

 Possible solutions:
 1 bi-dimensional B+-tree (A,B)

 2 mono-dimensional B+-trees (A),(B)

5

1 bi-dimensional B+-tree (A,B)

 Leaf capacity = 3 records

6

B

A

2 mono-dimensional B+-trees

 In this case we access 20% of data

7

B

A
A

B

B+-tree efficiency

 In both cases, too much wasted work

 The reason is that points which are close in space are stored in
distant leaves
 In the first case, by the “linearization” of attributes

 In the other case, by ignoring the other attribute

 Multi-dimensional (spatial) indices try to maintain
the spatial proximity of records

8

Spatial indexing

 Issue emerged in the ’70s due to the insurgence of
2/3-D problems
 Cartography

 Geographic Information Systems

 VLSI

 CAD

 Recovered in the ’90s to solve problems posed
by new applications
 Multimedia DBs

 Data mining

9

Spatial indices: different approaches

 Derived by 1-D structures
 k-d-B-tree, EXCELL, Grid file

 Mapping from n-D to 1-D
 Z-order, Gray-order

 Ad-hoc structures
 R-tree, R*-tree, X-tree, …

 In total: hundreds of data structures

10

Spatial indices: classification

 Type of objects
 For points (records cannot have a spatial extension)

 For regions

 Type of subdivision
 On the space (splits are performed according to global

considerations, à la linear hashing)

 Good for uniform distributions, simple to implement

 On the objects (splits are performed according to local
considerations, à la B-tree)

 Good for arbitrary distributions, hard to implement

 Type of organization
 Tree-/hash-based

11

Spatial indices: general considerations

 Fundamental requirement (Local Order Preservation)
 Group objects (points) in pages, guaranteeing that each page

contains objects which are “close” in the n-D space

 This prevents the use of hash functions,
which are not order-preserving

 The problem is not trivial, since in n-D a global order
is not defined (does this sound familiar?)

 In any case, some solutions define an order in n-D (à-la B+-tree)

 General approach
 The space is organized in regions (or cells)

 Each cell is mapped (not always 1-1) to a page

12

k-d-tree (Bentley, 1975)

 It is a main-memory structure
 Non paged

 Non balanced (any problem?)

 Binary search tree
 Each level is (cyclic) tagged with one of the n coordinates

 Every node contains a separator, given by the median value
of the interval that is being splitted

13

k-d-tree: example

 Suppose that each leaf can accommodate up to 3 objects

14

B

A

B1

B2

A1 A2

A

B

≤ A1 >A1

A

≤ B1 >B1

≤ A2 >A2

B

k-d-tree: searching

 We visit all branches overlapped with the query

15

B

A

B1

B2

A1 A2

A

B

≤ A1 >A1

A

≤ B1 >B1

≤ A2 >A2

B

k-d-tree: considerations

 During insertion, we search for the leaf where the new object
should be inserted
 If this is full: split (downward)

 The tree is not balanced
 It should be periodically re-organized

 Deletions are extremely complicated

 Several variants which manage separators in different ways,
e.g.:
 BSP-tree uses arbitrary hyperplanes (non-parallel to axes)

 VAMsplit kd-tree chooses the “best” split coordinate
at each node, as the one with maximum variance

16

k-d-B-tree (Robinson, 1981)

 Paged version of k-d-tree

 The resulting structures resembles a B+-tree

 Each node (page) corresponds to a (hyper-)rectangular region
(box, brick) of the space, obtained as the union of children
regions

 Internally, nodes are managed as k-d-trees
 The “size” of the tree depends on the capacity of a page

17

k-d-B-tree: example

18

F

H G

B

C

A

K

J

I

D E

B

A

B1

A1

root

A B

C

D E F G H I J K

root

≤ A1 >A1

>B1 ≤ B1

A C B

k-d-B-tree: node overflow

 If an index node (region) overflows,
the situation is much complex than in B-tree

 E.g.: split of data block E
 We partition E, then A, and finally the root

19

F

H G

K

J

I
D

E

B

A

E’

A’

B

C

A

B

A

R’’ R’

B

A

k-d-B-tree: split

 A balanced re-distribution is not always possible

 No lower bound on memory usage (~50-70%)
 In the example, was partitioned into A and A’ according to the

first separator

 Robinson algorithmo
 We consider an hyperplane splitting nodes in a balanced way

 Splits are propagated downward (to descendant nodes)

20

k-d-B-tree: Robinson algorithm

 The A region is split into A’ and A’’
 D is split into D and D’

21

F

H G

K

J

I

D E

B

A

E’

A’

B

C

A

B

A

R’’ R’

B

A

D’

hB-tree (Lomet & Salzberg, 1990)

 Variant of k-d-B-tree

 Regions can contain “holes” (hB = “holey brick”)

 Positive effects:
 Split of a data block: we can guarantee that, in the worst case,

data are partitioned according to a 2:1 ratio
(2/3 in one block and 1/3 in the other one)

 Split of an index node: we obtain a balanced split
(and thus a lower bound to the memory usage)
without propagating splits to the descendant nodes

22

hB-tree: split of a data page

 As in k-d-B-tree, each node is internally organized as a k-d-tree

 The difference here is that a node can be “referenced”
by multiple separations

23

A B

≤ A1 >A1

>B1 ≤ B1

A A B

B1

A1

hB-tree: split example (i)

 Suppose that each page can contain up to 7 nodes

 The root overflows

24

A B

G

F G

E

E D

C

D

B

A

G

F

B

A

C

E

hB-tree: split example (ii)

B

A

G

F G

E

E D

C

N”

N” N’

Root node

Node N’ Node N”

“external”

D

B

A

G

F

B

A

C

E N’

N”

25

EXCELL (Tamminen, 1982)

 Uses a hash-based directory, regular grid in n dimensions
 Each directory cell corresponds to a data page,

but the converse is not necessarily true

 The address of a cell is formed by interleaving coordinates bits

 Extends extendible hashing to multiple dimensions

26

EXCELL: example

 When a data page overflows, it is split and, for the directory,
we can have one of two cases
 If the block was referenced by two (or more) cells,

we only update pointers

 Otherwise, the directory is doubled, by using an additional bit

27

Directory

A B C D E

Data blocks

B

A

A
001

B
100

B
101

C
010

D
011

E
110

E
111

00 01 10 11

A
000

0

1

EXCELL: split (i)

28

A B C D E

Data blocks

F

Directory

B

A

F
001

B
100

B
101

C
010

D
011

E
110

E
111

00 01 10 11

A
000

0

1

 First case: A overflows and is split into A and F

 It is sufficient to update the pointer in cell 001

 Second case: C overflows and is split into C and G

 We have to double the directory using an additional bit
for coordinate B

EXCELL: split (ii)

29

A B C D E

Data blocks

F G

Directory

B

A

F
0010

B
1000

B
1010

C
0100

D
0110

E
1100

E
1110

00 01 10 11

A
0000

A
0001

F
0011

B
1001

B
1011

G
0101

D
0111

E
1101

E
1111

00

01

10

11

EXCELL: considerations

 The same arguments used for extendible hashing apply here

 Doubling the directory is sometimes not enough to solve
the overflow of a bucket (why?)

 It works well for uniform distribution of data

30

Grid file (Nievergelt et al., 1984)

 Generalizes EXCELL, allowing to define arbitrarily sized intervals
 To this aim, d scales are required, containing values used

as separators for each dimension

 In case of intervals defined by way of a binary partitioning,
scales are analogous to the directory of dynamic hashing

31

Grid file: example

 When a data page overflows, it is split and, for the directory,
we can have one of two cases
 If the block was referenced by two (or more) cells,

we only update pointers

 Otherwise, we add a separator to the directory

32

Directory

A B C D E

Data blocks

B

A

C

A C E

A

E B C

A2 A1

B1

B2

D

Grid file: split (i)

 First case: C overflows and is split into C and F

 It is sufficient to update the pointer of the cell

33

Directory

A B C D E

Data blocks

B

A

F

A C E

A

E B C

A2 A1

B1

B2

D

F

Grid file: split (ii)

 Second case: D overflows and is split into D and G

 We have to augment the directory using an additional
separation, for example for coordinate A

34

Directory

A B C D E

Data blocks

B

A

F D

A C E E

A

E B C E

A2 A3 A1

B1

B2

G

F G

Grid file: considerations

 In case of non-uniform distributions, storing N points
could require a number of cells which grows like O(Nd)

 On the other hand, the regular structure of space partitioning
greatly simplifies the resolution of window queries

 Main problem: directory management
 Usually, scales are stored in main memory

 In (quasi-)static cases, the directory can be stored on disk
as a multi-dimensional array

 In dynaimic cases, it is necessary to paginate the directory,
leading to multi-level grid files

35

Mono-dimensional sorting

 We try to “linearize” the n-dimensional space so as to be able
to exploit a mono-dimensional index, like the B+-tree

 We obtain so-called “space-filling curves”

 Local Order Preservation requirement
 Points which are “close” in the n-D space

should also be close in the linearization

36

Examples of curves (i)

 Z-order

 Peano-Hilbert

37

B

A

B

A

B

A

B

A

Examples of curves (ii)

 Gray-order

 Lexicographic
order

38

B

A

B

A

B

A

B

A

Space-filling curves: considerations

 As it is clear, no curve satisfies the local order preservation
requirement

 Solving window queries is therefore plagued by the same
problems seen for multi-attribute B+-tree
 Can we see analogies/equivalencies?

 Nearest neighbor search is further complicated…

39

R-tree (Guttman, 1984)

 Balanced and paginated tree-shaped structure,
based on the hierarchical nesting of overlapping regions

 Each node corresponds to a rectangular region,
defined as the MBB containing all children regions

 Storage utilization for each node varies from 100%
to a minimum value (≤ 50%) which is a design parameter
of R-tree

 Management mechanisms similar to those of B+-tree,
with the main difference that insertion of an object and
possible splits can be managed according to different policies

40

R-tree: concept of MBB

 MBB = Minimum Bounding Box
 The smallest rectangle, with sides parallel to coordinate axes,

containing all children regions

 It is defined as the product of n intervals

41

2-D box 3-D box

R-tree: definition of MBB (i)

 How many vertices has a n-dimensional (hyper-)rectangle? 2n

 In order to define a (hyper-)rectangle we should specify
the coordinates of all its vertices

 Moreover, the algorithm for computing the smallest
(hyper-)rectangle containing a set of N points has a complexity
 O(N2) in 2-dim

 O(N3) in 3-dim

 No algorithm is known for dim>3

42

R-tree: definition of MBB (ii)

 How many values are required for defining a box? 2n

 It is sufficient to provide the coordinates
of two any opposite vertices

 What is the complexity of the algorithm for computing the MBB
for a set of N points? O(N)
 It is sufficient to find the minimum and maximum value

for each coordinate

43

R-tree: comparison with B+-tree

B+-tree

 Balanced and paginated tree

 Data are stored in leaves

 Leaves are kept sorted

 Data are organized into
1-D intervals
 Intervals do not overlap

 This principle is recursively
applied towarts the root

 Point search follows
a single path from root
to a single leaf

R-tree

 Balanced and paginated tree

 Data are stored in leaves

 No data order exist

 Data are organized into
n-D intervals (MBB)
 Intervals do overlap

(characteristic of n-D

space)

 This principle is recursively
applied towarts the root

 Point search could follow
multiple paths from root
to multiple leaves 44

R-tree: organization

45

D

A B C

…………………………... P

N O P I J K L M D E F G H

A B C

G D

E

H
F

P
O

N

L

I

J

K

M

A

C

B

R-tree: characteristics (i)

 Leaf nodes
 Contain entries with the form (key, RID),

where key stores the record coordinates

 Actually, R-tree could also store n-dim objects
with a spatial extensione, with key=MBB

 Internal nodes
 Contain entries with the form (MBB, PID), where MBB stores

the coordinates of the MBB containing children entries

 Overall, each node contains entries with the form (key, ptr),
where key is a “spatial” value

46

R-tree: characteristics (ii)

 Each node contains a number m of entries which can vary
between c and C
 c≤C/2 is a storage utilization parameter

 C depends on n and the page size

 As usual, the root can violate the minimum utilization
constraint and contain only two entries

47

R-tree: search (window query)

 We have to retrieve all points included into a product
of n intervals (that is, a box)

 Such points could only be found in nodes whose MBB overlaps
with the query region

 E.g.: node N’ cannot contain records satisfying the query

48

query

Node N

Node N’

q

R-tree: search example

49

D

A B C

…………………………... P

N O P I J K L M D E F G H

A B C

G D

E

H
F

P
O

N

L

I

J

K

M

A

C

B

R-tree: search algorithm

 Consistent(E,q)
 Input: Entry E=(p,ptr) and search predicate q

 Output: if p & q == false then false else true

 Both p and q are (hyper-)rectangles

 Consistent returns true if and only if p and q have
non-null overlap
 Consistent is oblivious to the “shape” of q

 Could also be used for different queries (range, NN)

 It follows that the search can follow multiple paths
within the tree

50

R-tree: construction algorithms

 We need to specify key methods Union, (Compress,
Decompress,) Penalty, and PickSplit

 Different “variants” of R-tree exist, each differing
from the others on how such choices are implemented

 We will see the implementation of the original R-tree
and will discuss some variants
 One of the most common is R*-tree (Beckmann et al., 1990)

51

R-tree: Union

 Union(P)
 Input: Set of entries P = {(p1,ptr1),…,(pn,ptrn)}

 Output: A predicate r holding for all tuples reachable
through one of the entries’ pointers

 Both r and pjs are (hyper-)rectangles

 We return the MBB containing all pjs

 It is sufficient to compute the minimum and maximum value
on each coordinate

52

 p

R-tree: Penalty (i)

 Penalty(E1,E2)
 Input: Entries E1 = (p1,ptr1) and E2 = (p2,ptr2)

 Output: A “penalty” value resulting from inserting E2
 into the sub-tree rooted at E1

 What is the best way to insert a point?

53

A

C

B

 p

A

C

B

R-tree: Penalty (ii)

 If p is contained in E1, the penalty is 0

 Otherwise, the penalty is given by the increment of volume
(area) of the MBB
 However, if we are in a leaf, R*-tree considers

the increment of intersection with other entries

 Both criteria aim to obtain a tree with better performance:
 Large volume: the chance of visiting the node during a query

increases

 Large overlap: the number of nodes visited during a query
increases

54

R-tree: Picksplit (i)

 PickSplit(P)
 Input: Set of di C+1 entries

 Output: two sets of entries, P1 and P2, with cardinality ≥ c

55

p
N

C = 16

c = 6

p N1

N2

p N1
N2

?

R-tree: Picksplit (ii)

 Search for a split minimizing the sum of volumes
of the two nodes
 Unfortunately, it is a NP-hard problem, thus we use heuristics

 Things gets worse in upper nodes
 In particular, an overlap-free split is not guaranteed

56

C = 7

c = 3

N

N1

N2

N1

N2

?

R-tree: Picksplit (iii)

 The criterion adopted by R*-tree is more complicated and
considers both nodes volume and perimeter and their overlap

 Moreover, R*-tree supports re-distribution in both overflow
and underflow
 All such choices are implemented through heuristics,

since their efficiency is validated only experimentally

 We obtain (slight) performance improvements
for insertion, search, and storage utilization

57

